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Abstract 

Background:  

Cancer-associated fatigue and the chronic adverse effects of cancer therapy can be reduced by 

Lipid Replacement Therapy (LRT) using membrane phospholipid mixtures given as food 

supplements.  

 

Methods:  

This is a review of the published literature on LRT and its uses. 

 

Results:  LRT significantly reduced fatigue in cancer patients as well as patients suffering from 

chronic fatiguing illnesses and other medical conditions.  It also reduced the adverse effects of 

chemotherapy, resulting in improvements in incidence of fatigue, nausea, diarrhea, impaired 

taste, constipation, insomnia and other quality of life indicators.  In other diseases, such as 

chronic fatigue syndrome, fibromyalgia syndrome and other chronic fatiguing illnesses, LRT 

reduced fatigue by 35.5-43.1% in different clinical trials and increased mitochondrial function. 

  

Conclusions:  LRT formulations appear to be useful as non-toxic dietary supplements for direct 

use or placed in functional foods to reduce fatigue and restore mitochondrial and other cellular 

membrane functions.  Formulations of LRT phospholipids are suitable for addition to various 

food products for the treatment of a variety of chronic illnesses as well as their application in 

anti-aging and other health supplements and products. 
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Background 

Nutritional supplements are often taken to maintain health and prevent disease, but cancer 

patients routinely take multiple dietary supplements to prevent recurrence of cancer, reduce the 

adverse effects of cancer therapy and to improve quality of life [1-4].  Indeed, one of the most 

common changes in behavior among cancer patients is initiation of the use of multiple dietary 

supplements [3]. 

Studies conducted on the routine use of dietary supplements by cancer patients as well as 

cancer survivors indicate that there is often little consideration as to their safety, efficacy and 

potential negative effects [5, 6].  In fact, some data suggest that higher than recommended doses 

of some vitamins and minerals might result in enhancement of carcinogenesis, changes in 

survival in some cancers and interference with therapy or prescription medications [5, 6].  In 

cancer patients several potentially beneficial effects of dietary supplements have been 

documented, including reductions in the risk of cancer carcinogenesis and tumor progression, 

enhancement of immune responses against cancer or immune systems in general, improvements 

in nutrition and general health, and reductions in the adverse effects of cancer therapy [3-5, 7-

14].  Here we will focus on one of the most troublesome aspects of cancer and its therapy: 

cancer-associated fatigue. 

 

Introduction 

One of the most common symptoms in cancer that can add considerably to cancer morbidity is 

cancer-associated fatigue [13-16]. It exists in all types of cancers from the least to the most 

progressed cancers [15, 16].  Along with pain and nausea, it is one of the most common and 

troublesome symptoms of cancer  [16, 17].  Cancer-associated fatigue is especially apparent in 

advanced cancers where the systemic adverse effects of cancer therapy are almost always present 

[17-19].   

In advanced cancer patients receiving adjuvant therapies the prevalence of cancer-

associated fatigue is reported to be as high as 95% [20]. Thus cancer-associated fatigue is a 

problem before, during and after therapy, and it can continue to be a problem years after cancer 

treatment has stopped [16, 19].  Cancer-associated fatigue has a very strong negative effect on 

quality of life; therefore, addressing and reducing cancer-associated fatigue should be an 

important consideration in the treatment of cancer [14, 19]. 

  Although not well understood, cancer-associated fatigue is thought to be a combination 

of the effects of having cancer plus the effects of cancer treatments [16, 19].  Unfortunately, 

cancer-associated fatigue is rarely treated, and is often thought to be an unavoidable symptom 

[15, 16].  Cancer-associated fatigue can be considered to be the product of a variety of 

contributing factors [21].   In addition to a decrease in the availability of cellular energy, such as 
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provided by mitochondria, there exist psychological and medical factors that determine states of 

fatigue. The psychological factors include depression, anxiety, sleep disturbances, among others, 

and the medical factors include anemia, endocrine changes, poor nutritional status and release of 

inflammatory cytokines [11-14, 19-23].   All of these factors can all contribute to cancer-

associated fatigue [12-14].    

Cancer-associated fatigue does not occur as an isolated symptom.  Cancer patients 

usually have a variety of symptoms, including cancer-associated fatigue.  Cancer-associated 

fatigue occurs as one of multiple symptoms that are present at all stages of cancer, with 

exception of the very earliest stages.  Cancer-associated fatigue is similar to many other 

symptoms in cancer patients, in that the severity of cancer-associated fatigue usually correlates 

with decreased functional abilities [24].  

Cancer therapy also contributes in an important way to cancer-associated fatigue [19-21].  

In fact, the most commonly found and disabling effect of cancer therapy is fatigue [20, 24, 25]. 

During cancer therapy fatigue problems can vary, from mild to severe, and excess fatigue during 

cancer therapy is an important reason given by patients when they discontinue therapy [26].  

When Manzullo and Escalante  [23] reviewed the literature on the effects of cancer therapy on 

cancer-associated fatigue, they found that 80-96% of patients receiving chemotherapy and 60-

93% receiving radiotherapy experienced moderate to severe fatigue.  Fatigue not only was a 

significant problem during cancer therapy, but it continued for months to years after the therapy 

ended [23].  Thus in cancer patients suppressing cancer-associated fatigue as well as controlling 

therapy-induced fatigue are important in supportive cancer care [27].  

Recent research on cancer-associated fatigue has been directed at understanding and 

treating cancer-associated fatigue as well as developing ways to distinguish between depression 

and cancer-associated fatigue [15].  Depression is a common complaint of cancer patients.  Both 

cancer-associated fatigue and depression have multidimensional and heterogeneous qualities.  

For example, they both possess physical, cognitive and emotional dimensions, and there is a 

certain degree of overlap across these dimensions [15, 20].   

Fatigue or loss of energy is a core symptom in diagnosing depression.  Thus both fatigue 

and depression are often diagnosed together.  This is usually accomplished by self-assessment, 

where fatigue and depression are considered to be part of a clinical symptom cluster, co-

morbidity or syndrome [28, 29].  There are procedures, however, that can distinguish between 

cancer-associated fatigue and depression by removal of fatigue-associated assessments from an 

analysis of depression [30, 31].  Criteria have been established when assessing fatigue or cancer-

associated fatigue that take depression into consideration, and these two symptoms can thus be 

separated from one another by considering unshared properties [32]. 

Chronic fatigue lasting more than 6 months that is not reversed by normal sleep is the 

most common complaint of patients seeking general medical care  [33, 34].  Fatigue occurs 

naturally during aging, and it is also an important secondary condition in many clinical diagnoses 

[34, 35].  Most patients understand fatigue as a loss of energy and inability to perform even 
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simple tasks without exertion.  Many medical conditions are associated with fatigue, including 

respiratory, coronary, musculoskeletal, and bowel conditions as well as infections [33-35].  

Fatigue is the most common complaint made by the overwhelming majority of cancer patients 

[16, 19-21].  

 

Fatigue and its Relationship to Oxidative Stress and Damage to Mitochondria 

An important phenomenon associated with cancer and its progression as well as aging and age-

related degenerative diseases is oxidative stress [36-39].  Oxidative stress is caused by an 

intracellular excess of reactive oxygen (ROS) and nitrogen (RNS) free radical species over 

intracellular antioxidants.  When this imbalance occurs, it results in oxidation of cellular 

structures, such as membrane lipids and proteins; it also causes mutation of mitochondrial and 

nuclear DNA [39-42].  The free radicals ROS and RNS are naturally occurring cellular oxidants 

that are usually present in low concentrations; they are important cellular regulators and are 

involved in gene expression, intracellular signaling, cell proliferation, antimicrobial defense and 

other normal cellular processes [43-45].  However, when ROS/RNS are in excess over cellular 

antioxidants, oxidative damage can occur to cellular structures [39, 44-46].  Recently Maes [47] 

proposed a link between excess oxidative stress and activation of ROS/RNS pathways, which is 

in turn linked to fatigue and fatiguing illnesses. 

Cellular antioxidant defenses usually maintain ROS/RNS at appropriate concentrations 

that prevent excess oxidation of cellular structures [48-50].  Some of the endogenous cellular 

antioxidant defenses are mediated by glutathione peroxidase, catalase and superoxide dismutase, 

among other enzymes [51, 52].  There are also low molecular weight dietary antioxidants that 

can affect anti-oxidant status [53, 54].  Some of these dietary antioxidants have been used as 

natural chemopreventive agents to shift the excess concentrations of oxidative molecules down 

to more physiological levels [55, 56]. 

Excess oxidative stress and its mediators (ROS/RNS) within cancer cells have been 

linked to promotion and progression of cancer malignancy (metastasis) [57-61].  To demonstrate 

this oxidative stress and antioxidant status have been examined in various malignant cancers, 

such as breast [58-62], prostate [63, 64], colorectal [65, 66], renal [67, 68], and other cancers 

[69-71].  In all of these different cancers ROS/RNS were in excess of cellular antioxidant 

concentrations, resulting in excess oxidative stress.  Therefore, these cancers could have been 

induced as a consequence of excess ROS/RNS and oxidative damage to the genetic apparatus 

[37, 39, 72].  Even more likely than carcinogenesis is the progression of tumors that might not 

evolve to malignancy in the absence of excess oxidative stress [11-14]. 

 

Excess Oxidative Stress and Severe Fatigue Caused by Cancer Therapy  

Cancer therapy, such as chemotherapy, can result in the generation of excess ROS/RNS 

[reviewed in 8, 9, 11, 12].   Thus cancer therapy and the resulting production of excess oxidative 

stress can damage biological systems other than tumors [8, 9, 11, 12].  During chemotherapy the 
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highest known levels of oxidative stress are generated by anthracycline antibiotics, followed in 

no particular order by alkylating agents, platinum-coordination complexes, epipodophyllotoxins, 

and camptothecins [8, 9].  The primary site of ROS/RNS generation during cancer chemotherapy 

is the cytochrome P450 monooxygenase system within liver microsomes.  Enzyme systems, such 

as the xanthine-xanthine oxidase system, and non-enzymatic mechanisms (Fenton and Haber-

Weiss reactions) also play a role in creating excess oxidative stress during chemotherapy [8, 9].  

The very high levels of oxidative stress caused by anthracyclines is also related to their ability to 

displace coenzyme Q10 (CoQ10) from the electron transport system of cardiac mitochondria, 

resulting in diversion of electrons directly to molecular oxygen with the formation of superoxide 

radicals [reviewed in 8, 9]. 

Anthracyclines and other chemotherapeutic agents cause generation of high levels of 

ROS/RNS, but not all chemotherapeutic agents generate excess oxidative stress.  Some agents 

generate only modest amounts of ROS/RNS.  Examples of this are: platinum-coordination 

complexes and camptothecins, taxanes, vinca alkaloids, anti-metabolites, such as the anti-folates, 

and nucleoside and nucleotide analogues [8, 9, 11, 12].  However, most chemotherapeutic agents 

generate some oxidative stress, as do all anti-neoplastic agents when they induce apoptosis in 

cancer cells [8, 9].  Drug-induced apoptosis is usually triggered by the release of cytochrome c 

from the mitochondrial electron transport chain.  When this occurs, electrons are diverted from 

NADH dehydrogenase and reduced CoQ10 to oxygen, resulting in the formation of superoxide 

radicals [8, 9, 73]. 

Chemotherapeutic agents used to treat cancer cause oxidative stress, which produces side 

effects, and among the most common side effects is chronic fatigue [8, 9, 11, 12].  Chronic 

fatigue caused by cancer therapy can reduce therapeutic efficacy [12, 13].  Although many anti-

neoplastic agents have clearly established mechanisms of action that are not dependent upon the 

generation of ROS/RNS, these drugs can only mediate their anticancer effects on cancer cells 

that are exhibiting unrestricted progression through the cell cycle. They must also have intact 

apoptotic pathways.  Thus oxidative stress interferes with cell cycle progression by inhibiting the 

transition of cells from the G0 to G1 phase, slowing progression through S phase by inhibition of 

DNA synthesis. This results in inhibition of cell cycle progression of the G1 to S phase, and it 

also results in inhibition by checkpoint arrest [74-78]. 

Chemotherapeutic agents can also activate DNA repair systems. DNA repair of damage 

caused by alkylating agents and platinum complexes results in resistance to these drugs, and 

checkpoint arrest during oxidative stress can enhance the repair processes and diminish the 

efficacy of treatment [79-81]. Abolishing checkpoint arrest produces the opposite effect and 

enhances the cytotoxicity of anti-neoplastic agents.  By reducing oxidative stress, antioxidants 

counteract the effects of chemotherapy-induced oxidative stress on the cell cycle and enhance the 

cytotoxicity of antineoplastic agents [8, 9]. 

Important intracellular signal transduction pathways that are necessary for the action of 

some antineoplastic agents can also be affected by oxidative stress [8, 9, 82, 83]. There are two 
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major pathways of drug-induced apoptosis following cellular damage by anti-neoplastic agents: 

(1) The mitochondrial pathway, initiated by release of cytochrome c; and (2) the CD95 death 

receptor pathway, initiated by CD95L binding to its death receptor [8, 9, 81].  Oxidative stress 

during chemotherapy results in the generation of highly electrophilic aldehydes that have the 

ability to bind to the nucleophilic active sites of caspases as well as the extracellular domain of 

the CD95 death receptor.  This inhibits caspase activity and the binding of CD96L ligand, 

resulting in impairment of the ability of anti-neoplastic agents to initiate apoptosis [82-84]. 

Similar to chemotherapy, radiotherapy also results in generation of oxidative stress and 

excess ROS/RNS [85, 86].  The principal target of radiation in cancer cells is DNA, and DNA 

can be directly damaged by radiation.  However, genetic damage is also mediated by excess 

ROS/RNS [86, 87].  Recently the principal source of excess ROS/RNS during radiotherapy has 

been shown to be mitochondrial [87, 88].  Thus the initial cytotoxicity of radiation is now 

thought to be due to excess ROS/RNS, which triggers apoptosis via alteration of mitochondrial 

metabolism.  This causes transiently opening of mitochondrial permeability transition pores, 

which increases the influx of calcium ions into the mitochondrial matrix. The influx of calcium 

ions stimulates mitochondrial nitric oxide synthase and generation of nitric oxide, which then 

inhibits the respiratory chain and eventually stimulates excess ROS/RNS free radicals that 

initiate apoptosis [88, 89]. 

 

Cancer Therapy, its Adverse Side Effects and Damage to Cellular Mitochondria 

Cancer therapy is associated with several adverse side effects.  One of the most difficult side 

effects is caused by chemotherapeutic drug (or radiotherapeutic) damage to mitochondria [8, 9, 

11, 12].  Cardiac mitochondria are especially sensitive to certain chemotherapy agents, such as 

anthracycline antibiotics [8, 9]. Anthracycline-induced cardiac toxicity is characterized by acute, 

reversible toxicity that causes electrocardiographic changes and depressed myocardial 

contractility and by chronic, irreversible, dose-related cardiomyopathy [9, 90].  The selective 

anthracycline-induced toxicity to cardiac cells is due to damage to cardiac mitochondria.  The 

sensitivity of cardiac cells to anthracyclines, such as doxorubicin, has been found to be due to the 

unique properties of cardiac mitochondria, which possess a Complex I-associated NADH 

dehydrogenase in the inner mitochondrial membrane facing the mitochondrial cytosol [91, 92]. 

Small molecules can penetrate the outer mitochondrial membrane; thus doxorubicin as a 

relatively small molecule can readily penetrate the outer mitochondrial membrane [90, 93]. 

However, because it is hydrophilic and cannot partition into the lipid membrane matrix, it cannot 

penetrate the inner mitochondrial membrane [93].  Thus, it cannot participate in oxidation-

reduction reactions with the type of inner matrix-facing, electron transport chain dehydrogenases 

found in most types of cells, including most tumor cells [90, 93].  But in heart cells doxorubicin 

can interact with the mitochondrial cytosolic-facing NADH dehydrogenase that is unique to this 

tissue [94, 95].  This interaction produces doxorubicin aglycones, which are highly lipid soluble 
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and readily penetrate the inner mitochondrial membrane [90, 93].   At this location they can 

displace CoQ10 from the electron transport chain [90, 94].    

The displacement of CoQ10 from the electron transport chain during doxorubicin 

treatment results in decreased CoQ10 in cardiac muscle [96].  This occurs as the plasma 

concentration of CoQ10 increases [97].  CoQ10 normally accepts electrons from Complexes I and 

II and transfers them down the electron transport chain, resulting in the formation of water.  

However, the presence of aglycones in the inner mitochondrial membrane and inner matrix 

results in the transfer the electrons directly to molecular oxygen, resulting in the formation of 

superoxide radicals [98]. Thus, doxorubicin generates a high level of oxidative stress in cardiac 

mitochondria, causing acute cardiac toxicity and damage to mitochondrial DNA [90, 95, 99]. 

Cardiac cells that are damaged by anthracyclines cannot sustain their function, and 

changes in their structure, mostly disruption of mitochondria, eventually results in apoptosis [90, 

100].  This produces cardiac insufficiency and an inability to respond to pharmacological 

interventions, resulting ultimately in cardiac failure.  However, if CoQ10 is administered during 

anthracycline chemotherapy, damage to the heart is prevented by decreases in anthracycline 

metabolism within cardiac mitochondria and by competing with aglycones for the CoQ10 sites 

within the electron transport chain [8, 9, 90].  Thus, CoQ10 administered concurrently with 

anthracyclines can maintain the integrity of cardiac mitochondria and prevent damage to the 

heart, and at the same time enhancing the anti-cancer activity of anthracyclines [8, 9, 90]. 

In addition to chemotherapy, radiotherapy also produces damage to tissues other than 

cancer tissues. Agents that protect tissues against radiation effects have been used to reduce 

unwanted damage [88, 101]. Such radioprotective agents that have been used to decrease the 

adverse effects of radiotherapy are: antioxidants, free radical scavengers, inhibitors of nitric 

oxide synthase and anti-inflammatory and immunomodulatory agents [88, 101].  The most 

effective of these target mitochondria, such as proteins and peptides that can be transported into 

mitochondria and plasmids or nucleotide sequences.  For example, agents that target and 

stimulate mitochondrial manganese superoxide dismutase genes can be used as radioprotective 

agents [88]. 

 

Molecular Replacement of Mitochondrial Components During Cancer Therapy  

Replacement of CoQ10 during chemotherapy dramatically prevents development of 

anthracycline-induced cardiomyopathy and histopathological changes in heart tissue [9, 90].  

Administering CoQ10 can also prevent changes in electrocardiograms (EKG) characteristic of 

anthracycline-induced heart damage [102]. In animals the administration of CoQ10 resulted in 

increased survival, improvement in their EKG patterns, and reduced heart histopathological 

changes [103].  These preclinical data, along with clinical data [discussed in 11, 12, 90] support 

the contention that CoQ10 protects the heart tissue from anthracycline-induced damage. 

During chemotherapy with anthracyclines in some institutions cancer patients have 

received concurrent administration of CoQ10 to prevent both chronic and acute cardiotoxicity  [9, 
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11, 12, 90].  For example, the importance of administering CoQ10 on the development of 

doxorubicin-induced cardiotoxicity in patients with lung cancer has been studied by Judy et al. 

[104]. Doxorubicin given alone without CoQ10 caused marked impairment of cardiac function 

with a significant increase in heart rate and a substantial decrease in ejection fraction, stroke 

index and cardiac index.  In contrast, doxorubicin administered along with CoQ10, did not cause 

cardiotoxicity, and cardiac function remained unchanged [104]. Other studies have confirmed 

these results and have shown that CoQ10 can reduce the cardiac toxicity of doxorubicin in adults 

[105, 106] and also in children [107, 108].  Thus in preclinical and clinical studies the data 

indicate that CoQ10 protects the heart from the cardiotoxicity of anthracyclines. 

 

Cancer-Associated Fatigue and Other Adverse Effects of Therapy  

The most common complaint of patients undergoing anti-neoplastic therapy is fatigue, but there 

are also other complaints of patients that are undergoing cancer therapy [13, 14].  These include: 

pain, nausea, vomiting, malaise, diarrhea, headaches, rashes and infections [23, 106, 108].  Other 

more serious problems can also occur, such as cardiomyopathy, peripheral neuropathy, 

hepatotoxicity, pulmonary fibrosis, mucositis and other effects caused by therapy [23, 26, 106, 

108].  In terms of their cancer-associated fatigue, most patients feel that cancer therapy-caused 

fatigue is an untreatable symptom [25].
 
 Although fatigue is usually the most commonly reported 

adverse symptom during cancer therapy, up until recently there was little effort directed at 

reducing fatigue before, during or after cancer therapy [109].  The perception that cancer-

associated fatigue is an untreatable symptom has changed recently [12, 14]. 

Reducing cancer-associated fatigue and fatigue associated with cancer therapy are now 

considered important therapeutic goals.  Psychological, physical, pharmaceutical and 

nutraceutical methods have been undertaken to reduce fatigue and improve the quality of life of 

cancer patients [14, 23, 111].  Such treatments are based mainly on suppressing fatigue but also 

on controlling co-morbid or related symptoms, such as pain, anemia, cachexia, sleep disorders, 

depression and other symptoms [14, 23, 111-115]. 

Unfortunately, there is no standard protocol related to treating cancer-associated fatigue 

and related symptoms.  In reviewing the types of supportive measures used to control fatigue and 

related symptoms, the data suggest that graded exercise, nutritional support, treatment of 

psychological problems (such as depression with certain anti-depressants or psycostimulants), 

treatment of anemia with hematopoetic growth factors and control of insomnia with cognitive 

behavioral therapy or pharmacological and nonpharmacological therapies all have a role to 

various degrees in controlling cancer-associated fatigue [110-115].  Some of these approaches, 

such as the use of pharmacological drugs and growth factors, have been systematically meta-

analyzed in 27 studies [116].  In this limited analysis, only a psycostimulant (methylphenidate) 

and hematopoetic growth factors (erythropoietin and darbopeitin) were more effective than 

placebo treatments.  Other treatments were no better than placebo in the treatment of cancer-

related fatigue 116].  
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Cancer-Associated Fatigue, Aging and Mitochondrial Membrane Damage  

As discussed above, cancer-associated fatigue has been defined as a multidimensional sensation 

[14, 35, 112, 113, 116].  Most patients understand fatigue as a loss of energy and inability to 

perform even simple tasks without exertion [116, 117].  Cancer-associated fatigue has been 

described as the dysregulation of several interrelated physiological, biochemical and 

psychological systems [112, 113], but at the tissue and cellular levels fatigue is related to 

reductions in the efficiency of cellular energy systems, mainly found in mitochondria [13, 14, 

118].  Damage to mitochondrial components, mainly by ROS/RNS oxidation of membrane 

phospholipids, can impair mitochondrial function, and this can also result in oxidative damage to 

other cellular structures [reviewed 36, 42, 44].  Mitochondrial membranes and DNA are major 

targets of oxidative stress, and with aging ROS/RNS mitochondrial damage can accumulate [80, 

119]. 

During aging and in certain medical conditions oxidative damage to mitochondrial 

membranes impairs mitochondrial function [80, 119, 120].  For example, in chronic fatigue 

syndrome patients evidence of oxidative damage to DNA and lipids exists [120, 121] as well as 

oxidized blood markers [122] and muscle membrane lipids [123] that are indicative of excess 

oxidative stress [124].  In chronic fatigue syndrome patients also have sustained elevated levels 

of peroxynitrite due to excess nitric oxide, which can result in lipid peroxidation and loss of 

mitochondrial function as well as changes in cytokine levels that exert a positive feedback on 

nitric oxide production, increasing the rate of membrane damage  [126].  

 

Lipid Replacement Therapy of Oxidized Membrane Components and its Effect on Fatigue  

In cancer patients mitochondrial membranes as well as other cellular membranes are especially 

sensitive to oxidative damage by ROS/RNS, which occurs at high rates in cancer [65, 66, 68-71, 

124].  Oxidation of membrane phospholipids alters their structure, affecting lipid fluidity, 

permeability and membrane function [124, 126, 127].  One of the most important events caused 

by ROS/RNS damage is loss of electron transport function, and this appears to be related to 

mitochondrial membrane lipid peroxidation. Membrane oxidation induces permeability changes 

in mitochondria, and this can cause loss of mitochondrial transmembrane potential, an essential 

requirement of oxidative phosphorylation [128, 129]. 

Lipid Replacement Therapy (LRT) has been used to reverse the accumulation of 

damaged phospholipids in mitochondria and other cellular membranes by replacing them with 

unoxidized phospholipids [13, 14, 130]. LRT plus antioxidants has been show to reverse 

ROS/RNS damage and increase mitochondrial function in certain fatiguing disorders, such as 

chronic fatigue, chronic fatigue syndrome and fibromyalgia syndrome [118, 131].  LRT has been 

found to be effective in preventing ROS/RNS-associated changes and reversing mitochondrial 

damage and loss of function [reviewed in 14, 131]. 
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LRT with unoxidized phospholipids and antioxidant supplements has been effective in 

replacement of damaged cellular and mitochondrial membrane phospholipids and other lipids 

that are essential structural and functional components of biological membranes [reviewed in 14, 

131].  NTFactor®, a LRT oral supplement containing phospholipids, phosphoglycolipids and 

other membrane lipids, has been used successfully in animal and clinical LRT studies [13, 14, 

118, 131, 132].  NTFactor's encapsulated lipids are protected from oxidation in the gut and can 

be absorbed and transported into tissues via lipid carriers without oxidation.  Once inside cells 

the membrane lipids naturally replace oxidized, damaged membrane lipids by natural diffusion, 

and carrier proteins pick up the damaged lipids for degradation, transport and excretion [134]. 

In preclinical studies NTFactor® lipids have been used to reduce age-related functional 

damage, such as hearing loss associated with aging in rodents.  NT Factor® lipids prevented 

hearing loss associated with aging and shifted the threshold hearing from 35-40 dB in control, 

aged rodents to 13-17 dB [134].  They also found that NT Factor® lipids preserved cochlear 

mitochondrial function and prevented aging-related mitochondrial DNA deletions found in the 

cochlear [134]. Thus NT Factor® lipids were successful in preventing age-associated hearing 

loss and reducing mitochondrial damage and DNA deletions in rodents [134]. 

In clinical studies LRT has been used to reduce fatigue and protect cellular and 

mitochondrial membranes from oxidative damage by ROS/RNS [reviewed in 13, 14, 131].  A 

LRT-vitamin mixture containing NT Factor® (Propax
TM

 with NT Factor®) was by used by 

Ellithorpe et al. [132] in a study of patients with severe chronic fatigue and was found to reduce 

their fatigue by approximately 40.5% in 8 weeks.  In these studies fatigue was monitored by use 

of the Piper Fatigue Scale to measure clinical fatigue and quality of life [135].  In a subsequent 

study we examined the effects of NT Factor® on fatigue and mitochondrial function in patients 

with moderate to severe chronic fatigue [118].  Oral administration of NT Factor® for 12 weeks 

resulted in a 35.5% reduction in fatigue and 26.8% increase in mitochondrial function; whereas 

after a 12-week wash-out period fatigue increased and mitochondrial function decreased back 

towards control levels [118].  Thus in fatigued subjects dietary LRT can significantly improve 

and even restore mitochondrial function and significantly decrease fatigue.  Similar findings 

were observed in chronic fatigue syndrome and fibromyalgia syndrome patients [131].  Recently 

a new formulation of NT Factor® plus vitamins, minerals and other supplements (Revacel
TM

 

with NT Factor®) resulted in a 36.8% reduction in fatigue within one week [136] (Table 1). 

 

Lipid Replacement Therapy in Conjunction with Cancer Therapy 

LRT has been used to reduce the adverse effects of chemotherapy in cancer patients [reviewed in 

14].  For example, a vitamin-mineral mixture with NTFactor (Propax
TM

 with NTFactor®) has 

been used in cancer patients to reduce some of most common adverse effects of cancer therapy, 

such as chemotherapy-induced fatigue, nausea, vomiting, malaise, diarrhea, headaches and other 

side effects [137].  In two studies on patients with advanced metastatic colon, pancreatic or rectal 
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cancers receiving a 12-week chemotherapy treatment schedule of 5-florouracil/ 

methotrexate/leukovorin LRT was used to reduce adverse effects of chemotherapy [137].   
 

Table 1.  Effects of dietary LRT supplement NTFactor on Piper Fatigue Scale scores.
1
 

 

______________________________________________________________________________ 

      Av      Time  Piper Fatigue Scale 

Subjects/patients  n  age on LRT fatigue reduction (%)  Reference 

______________________________________________________________________________ 

 

Chronic fatigue
2
  34 50.3   8 wks  40.5**             Ellithorpe et al. [132] 

 

Aging, chronic fatigue
3
 20 68.9 12 wks  35.5*          Agadjanyan et al. [118] 

  

Chronic fatigue syndrome  

(and/or fibromyalgia  

syndrome
#
)
2
   15 44.8   8 wks  43.1*   Nicolson & Ellithorpe [131] 

 

Obesity, fatigue
4
  35 42  8 wks  24*             Nicolson et al. [138] 

 

Aging, chronic fatigue
5
 67 57.3   1 wk  36.8*    Nicolson et al. [136]  

______________________________________________________________________________ 

 
1
Modified from Nicolson [14] 

2
Propax

TM
 with NT Factor® 

3
NT Factor® 

4
Healthy Curb

TM
 with NT Factor® 

5
Advanced Physician’s Formula

TM
 or Revacel

TM
 with NT Factor® 

**P<0.0001,  *P<0.001 compared to without NT Factor® 
#
5/15 fibromyalgia syndrome; 3/15 chronic fatigue syndrome plus fibromyalgia syndrome 

______________________________________________________________________________ 

 

In the first unblinded part of the clinical study the effectiveness of NTFactor in a vitamin-mineral 

mixture (Propax
TM

 with NTFactor®) administered before and during chemotherapy was 

determined by examining signs and symptoms, and in particular, the side effects of therapy.   A 

quality of life evaluation was conducted by a research nurse, and it was determined that patients 

on NTFactor supplementation experienced significantly fewer episodes of fatigue, nausea, 

diarrhea, constipation, skin changes, insomnia and other side effects [137]. In this open label trial 

81% of patients demonstrated an overall improvement in quality of life parameters while on 

chemotherapy with LRT [137].  In the double-blinded, cross-over, placebo-controlled, 

randomized part of the study on advanced cancers the patients on chemotherapy plus LRT 

showed improvements in signs/symptoms associated with the adverse effects of chemotherapy 

[137].  Adding LRT resulted in improvements in the incidence of fatigue, nausea, diarrhea, 

impaired taste, constipation, insomnia and other quality of life indicators.  Following cross-over 

from the placebo arm to the LRT arm, 57-70% of patients on chemotherapy reported 

improvements in nausea, impaired taste, tiredness, appetite, sick feeling and other quality of life 
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indicators [137] (Table 2). This clinical trial and other data clearly demonstrated the usefulness 

of LRT given during chemotherapy to reduce the adverse effects of cancer therapy [reviewed in 

14].  
 

Table 2.  Effects of LRT (Propax
TM

 with NTFactor®) on the adverse effects of cancer 

chemotherapy in a cross-over clinical trial.
1,2

 

______________________________________________________________________________ 

        Average % patients on test arm
3
_________ 

First arm   Second arm  improvement       no change       worsening 

______________________________________________________________________________ 

placebo   Propax
TM

+NT Factor® 57     22     21 

Propax
TM

+NT Factor® placebo   70      6     24 

______________________________________________________________________________ 
1
Table modified from Nicolson [14]. 

2
The same regimen of 5-flurouracil/methotrexate/leukovoran was used for colon, pancreatic or rectal cancers. 

3
The percent of patients’ self-reporting adverse effects was averaged with the percent of patients with adverse 

effects reported by a research nurse. 

______________________________________________________________________________ 

 
 

Potential New Lipid Replacement Therapy Products and their Possible Uses 

In addition to use of LRT in cancer patients before, during and after their anti-cancer therapy, 

LRT has a number of other uses in many possible new products.  Some of the possible new 

products containing LRT formulations are listed in Tables 3 and 4.  For example, LRT 

formulations could have a variety of new uses as additives to functional foods (Table 3) or as 

condition-specific dietary supplements (Table 4).  Some existing uses of LRT formulations in 

conditions other than cancer are as follows. 

 

Table 3.  Potential Functional Food products where LRT can be added. 

____________________________________________________________________________ 

Nutritional Products  Beverages  Dairy Products Energy Foods 

____________________________________________________________________________ 
 

Fruit powders   Energy drinks  Yogurts ` Energy bars 

Vegetable powders  Fruit drinks  Milk   Energy drinks 

Protein powders  Vegetable drinks Cheeses  Energy shots 

Meal replacements  Soy milk  Sour cream  Antioxidant drinks 

Cereals   Vitamin drinks Cottage cheese Cookies 

Frozen foods   Probiotic drinks Butter   Energy chews 

Breads and bakery goods Milk   Ice cream  Powders 

Soups       Soy ice cream 

Pet foods       

___________________________________________________________________________  
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Table 4.  Potential condition-specific dietary supplements with added LRT. 

__________________________________________________________________________ 

 

Amino acid supplements    Herbal supplements 

Anti-aging supplements    Hormone supplements 

Bone and joint supplements    Liver health supplements 

Brain health supplements    Urinary health supplements 

Cellular support supplements    Mood relief supplements 

Digestive support supplements   Prostate health supplements 

Heart health supplements    Sports performance supplements 

Fiber supplements     Weight loss supplements 

Immune enhancement supplements   Multivitamin supplements 

Inflammatory support supplements   Essential fatty acid supplements 

    

___________________________________________________________________________ 

 

LRT and Weight Loss 

Many individuals have weight issues or are obese, and weight reduction regimens that use drugs 

or stimulants can result in increased fatigue.
 
 We have studied the use of LRT in a weight loss 

clinical trial using a NT Factor® mixture with an FDA-approved amaylase inhibitor (Healthy 

Curb
TM

) [138]. The objective was to see if subjects could safely lose weight without increasing 

appetite or fatigue and without changing eating or exercise patterns or using drugs, herbs or 

caffeine. A 2-month open label clinical trial with Healthy Curb
TM

 was initiated.  Weight and 

measurements were taken weekly, appetite was assessed and fatigue was determined using the 

Piper Fatigue Scale [135].  We found that sixty-three percent of the participants lost an average 

of 6 pounds along with 2.5 and 1.5 inch reductions in waist and hip circumference, respectively, 

and the entire group of participants lost an average of 3 pounds with average reductions of 1.5 

and 1 inch waist and hip circumference, respectively.  Participants experienced gradual and 

consistent weight loss along with reductions in waist and hip measurements, body mass index 

(BMI) and basal metabolic rate (BMR) during the entire trial [138].  There was a 44% reduction 

in overall hunger with reduced cravings for sweets, and thus notable appetite suppression 

occurred during the trial.  The entire test group showed an average of 24% decrease in overall 

fatigue.  Blood lipid profiles generally improved, suggesting improved cardiovascular health, and 

no adverse effects were noted clinically or found in blood chemistries [138]. 

 

LRT and Fatiguing Illnesses 

Fatiguing illnesses, such as chronic fatigue syndrome, fibromyalgia syndrome, Gulf War illness 

and other fatiguing illnesses can be successfully treated with LRT, such as NT Factor® and 

products containing NT Factor® (Table 1).  In fatiguing illness patients use of products 

containing NT Factor® resulted in reductions in fatigue of approximately 35-43% (Table 1) 

[118, 131, 132, 136].  In addition to fatigue, use of LRT in fatiguing illnesses patients also 
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resulted in enhanced qualify of life and better mood, concentration, cognition and other 

symptoms [131, 132, 136], along with enhanced mitochondrial function [118]. 

 

LRT and Anti-Aging Products 

LRT has the potential to reduce the effects of aging.  In animal studies LRT reduced hearing loss 

and DNA mutations associated with aging [135].  In clinical trials using aged subjects (average 

age 68.9) LRT with NT Factor® significantly reduced fatigue by 35.5% in 12 weeks [118].  

When mitochondrial function was assessed in these subjects, there was a 26.8% increase in 

mitochondrial function after LRT with NT Factor® to the levels found in much younger adults.  

After a 12-week wash-out period, fatigue increased and mitochondrial function decreased back 

towards control levels [118].  This indicated that LRT was effective in reversing some of the 

effects of aging, such as fatigue and loss of mitochondrial function.  Anti-aging formulations, 

such as Healthy Aging
TM

 with NT Factor®, have been used to repair damaged cellular 

membranes and reverse some of the other natural oxidative effects of aging. 

 

LRT and Degenerative Diseases 

Patients with neurodegenerative, neurobehavioral and metabolic illnesses all have problems with 

excess oxidation damage.  For example, in the case of neurological diseases brain cells are 

particularly vulnerable to oxidative stress and damage caused by excess ROS/RNS.  This is 

because of the brain’s inability to withstand excess oxidative stress due to a high content of 

easily oxidized substrates (membrane phospholipids), relatively low levels of endogenous 

antioxidants, relatively high levels of endogenous generation of ROS and the endogenous 

generation of nitric oxide [139-141].  Antioxidant nutraceuticals (natural supplements, vitamins 

and minerals) have been proposed as a strategy to attenuate oxidative damage in neurological 

diseases [142].  In addition, LRT formulations, such as Healthy Aging
TM

 with NT Factor®, 

contain a key brain phospholipid (phosphatidylserine) that improves brain ―age-associated 

memory impairment,‖ learning and cognitive performance that are impaired in dementing 

disorders like Alzheimer’s disease [143].  LRT could also be used to repair oxidatively damaged 

brain structures, such as mitochondrial and cellular membranes, and reduce the damage caused 

by endogenous oxidation. 

 

LRT and Respiratory Diseases 

Asthma, chronic obstructive pulmonary disease and other respiratory conditions are 

characterized by inflammation and oxidative stress [144, 145].  Antioxidants have been proposed 

to attenuate the incidence and severity of respiratory attacks [145].  New products, such as 

Breathe Clear
TM

 with NT Factor®, have been used to reduce the symptoms of allergic and 

respiratory inflammation.  In addition to NT Factor®, Breathe Clear
TM

 contains quercetin and 

other bioflavoids plus amino acids and L-taurine to reduce allergic inflammation and pulmonary 
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reactions. Quercetin is a flavonol that helps modulate the release of histamine by mast cells 

[146]. 

 

LRT and Cardiovascular Diseases 

Mitochondrial oxidative stress has been implicated, along with other factors, in cardiovascular 

disease and heart attack [147, 148].  Aging is accompanied by accumulation of cardiac 

mitochondrial membrane oxidation, increased mitochondrial DNA mutations as well as 

decreased production of critical cardiac proteins [147].  Vitamins, minerals, antioxidants and 

other supplements have been suggested as dietary approaches to reduce the risk of myocardial 

infarction and coronary disease [149, 150].  LRT could play an important role in repairing 

cardiac mitochondrial and cellular membranes, an important role in cardiovascular health. 

 

LRT, Metabolic Syndrome (Pre-Diabetes) and Type 2 Diabetes 

One of the central defects in metabolic syndrome (a pre-diabetes, pre-cardiovascular disease 

syndrome) and its associated diseases (type-2 diabetes, vascular inflammation, atherosclerosis, 

among other diseases) is excess cellular oxidative stress [151, 152].  Nutritional supplements, 

vitamins, minerals, antioxidants and other supplements [151] as well as LRT with NT Factor are 

important new approaches, along with diet, weight management and lifestyle changes, for 

treating metabolic syndrome and preventing its associated diseases [151, 152]. 

 

Conclusions 

Nutritional supplements have been used in a variety of diseases to provide patients with a 

natural, safe alternative to pharmacological drugs. In patients with cancer and other chronic 

illnesses nutritional supplements are often used for specific purposes or to improve quality of 

life.  For example, cancer-associated fatigue is one of the most common symptoms in all forms 

and stages of cancer, but few patients receive assistance for their fatigue.  Cancer-associated 

fatigue is associated with cellular oxidative stress, and during cancer therapy excess drug-

induced oxidative stress can cause a number of adverse effects, including: fatigue, nausea, 

vomiting and more serious effects.  Cancer-associated fatigue and the adverse effects of cancer 

therapy can be reduced with LRT using natural phospholipid supplements that replace damaged 

membrane lipids along with providing antioxidants and enzymatic cofactors.  Administering 

dietary LRT supplements can reduce oxidative membrane damage and restore mitochondrial and 

other cellular functions.  Recent clinical trials using cancer and non-cancer patients with chronic 

fatigue have shown the benefits of specific LRT nutritional lipid supplements in reducing fatigue 

and restoring mitochondrial function.  Newer formulations of LRT supplements will prove to be 

important additions in the treatment of a variety of chronic illnesses as well as useful additions to 

anti-aging and other health products. 
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